

Development of Early-Indicators for Failure-Prognosis of Electronics

Pradeep Lall

Thomas Walter Professor
Auburn University
Department of Mechanical Engineering
and NSF Center for Advanced Vehicle Electronics
Auburn, Auburn, AL 36849
Tele: 334-844-3424

E-mail: lall@eng.auburn.edu

Objectives

Develop technologies to determine system/component degradation and damage significantly prior to failure.

Enable nearly continuous on-board situational awareness of the vehicle electronic-system health state.

Understand fault modes associated with high-power electronics, and lead-free solder joints, new packaging architectures.

Develop automatic methods for detection, diagnosis, and prognosis of the vehicle at a system and subsystem level.

Develop capabilities for analyzing effects of environmental hazards on vehicle electronics, damage and degradation mechanisms to assess the vehicle's health state.

Approach to Prognostics Framework

Test Vehicles

TARRAY144 - 0.8mm - 10mm-DC

CABGA100 0.8mm Pitch 10mm

SAC Alloys

- 1. SAC105
- 2. SAC305
- 3. SAC0307
- 4. SACX
- 5. SACX-plus
- 6. Sn3.5Ag

Micropearl SOL650 SnAg Finish

Sn10/Pb90

96.5Sn3Ag0.5Cu

63Sn37Pb

CBGA

DIC Experimental Set-up

Vibration Testing

- Experimental Setup

Random Profile from 12-500 Hz at 2.54 Grms

Sine Sweep from 50-500 Hz at 2G

Digital Image Correlation

SACX – plus; Drop 78; t = 1.98ms,

SACX - plus; Drop 430;t = 1.98ms,

2D strain contours at package location 13 before and after failure for the SACX-Plus alloy system

Repeatability of Drop Orientation

Test B	oard B	Test Board A			
Standard deviation (degrees)	Mean Value (degrees)	Mean Value (degrees)	Standard deviation (degrees)		
0.87	0.2	0.34	0.90		

Wavelet Packet Decomposition

$$W_{f}(u,s) = \langle f, \psi_{u,s} \rangle$$

$$= \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} f(t) \psi^{*} \left(\frac{t-u}{s} \right) dt$$

Statistical Pattern Recognition Techniques

Group of Values:
$$(\mu_1, \mu_2, \mu_3, ..., \mu_n)$$

Covariance Matrix: $\sum_{ij} = \text{cov}(x_i, x_j) = \frac{1}{n-1} \langle (x_i - \mu_i)(x_j - \mu_j) \rangle$

Mahalanobis Distance Computation

$$D_{M}(x) = \sqrt{(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \underbrace{\sum_{\substack{y \text{ of } x \text{ of } x$$

Mahalanobis distance accounts for the variance and covariance of the variables as opposed to only the average value.

Time Frequency Distribution

Time Moment Feature Vector

Department of Mechanical Engineering

Failure Mechanisms

Pad I/O PCB side Resin Crack.

Failed Solder Joint at board-interface

Failed Solder Joint at Package Interface

Cracking of Copper and Laminate

Partial Solder-Ball Cracking

One Solder Beam Cracked

Three Solder Beams Cracked (c)

Two Solder Beams Cracked

Four Solder Beams Cracked (d)

Cracked

Solder Phase Growth

Cross-sectioned samples at various levels of thermal cycling and thermal aging

Cross section studies under SEM JEOL JSM-7000F.

Measured the Ag₃Sn particle size (g) from a 60 μm x 45 μm rectangular region selected from a backscattered SEM image of a highest strain corner solder ball

Indicators of Damage > Cyclic Thermo-Mechanical Loads

Progression of Damage Pre-Cursors

> Phase Growth Measurements - Thermal Cycling

Case 1: Thermo-Mechanical Loads

> Interrogate System State in Prognostication Time-Neighborhood

 $t-2\Delta t$ $t-\Delta t$ $t+\Delta t$ $t+2\Delta t$ 250 Cycles

Alloy System	Constant 'a'	Constant 'b'	Initial Grain size 'g ₀ '	
SAC105	0.0004 - 0.0013	1.10 - 1.20	0.92 - 1.02	
SAC0307	0.00005 - 0.003	1.00 - 1.25	0.95 - 1.15	

$$g_1^4 = g_0^4 + a(N + \Delta N_1)^b$$

$$g_2^4 = g_0^4 + a(N + \Delta N_2)^b$$

$$g_3^4 = g_0^4 + a(N + \Delta N_3)^b$$

Trust
$$g_4^{\ 4} = g_0^{\ 4} + a(N + \Delta N_4)^b$$

Interrogation of System State

Interrogation of System State

Alloy	Cycles 'N'		Grain Size (µm)		Constant 'a'		Constant 'b'	
System	Expt	LM	Expt	LM	Expt.	LM	Expt.	LM
SAC 105	250	200	0.978	1.012	8e-4	4.9e-4	1.135	1.199
SAC 305	250	200	1.039	1.069	1e-3	1.3e-4	1.176	1.138
SAC 405	250	225	0.839	0.822	3e-4	4.4e-4	1.216	1.151
SAC 0307	250	225	0.909	0.949	7e-4	5e-4	1.126	1.200
SACX	250	177	1.555	1.60	1.5e-3	0.9e-3	1.207	1.280
SACX-plus	250	175	1.113	1.20	1.3e-3	0.7e-3	1.240	1.330
Sn3.5Ag	250	175	1.429	1.50	8.1e-4	6e-4	1.328	1.369

Alloy System	Aging	Time (hrs)	IMC 'y ₀ ' (µm)		
System	Expt	LM	Expt	LM	
SAC 105	667	621	2.889	2.829	
SAC 305	667	625	2.684	3.039	
SAC 405	22	28	3.400	3.310	
SAC0307	667	690	3.456	3.687	
SACX	667	830	3.935	3.661	
SACX-plus	667	830	3.912	3.912	
Sn3.5Ag	667	915	6.123	6.100	

Model Validation

Interrogate system state in the time-neighborhood of 250 cycles.

Assessment of prior damage.

Determination of residual life.

	Experiment				Model Predictions			
	dS/dN	N1%	N	RL	dS/dN	N1%	N	RL
P676	1.1167	3219	250	2969	0.8916	2570	229	2341
F280	1.1434	1989	250	1739	0.8756	1523	332	1191
T144	1.1860	2004	250	1754	1.2272	2073	230	1843
T64	1.3310	1933	250	1683	1.1447	1662	231	1431
C84	1.3635	2818	250	2568	1.1695	2417	232	2185

Resistance Spectroscopy Damage Pre-cursors

- Phase Shift vs Time

Summary and Conclusions

- Developed leading indicators of failure for shock, vibration, isothermal and cyclic thermo-mechanical loads.
- Developed a methodology has been presented to calculate the prior damage in electronics subjected to cyclic and isothermal thermo-mechanical loads.
- The correlations indicate that the leading indicators based PHM technique can be used to interrogate the system state and thus estimate the Residual-Life of a component
- The presented approach of computing residual life can be implemented prior to appearance of any macro-indicators of damage like crack